

Constellation-X FST Meeting

Kent Irwin (NIST)

Columbia University, May 2003

- \rightarrow 2x10 MUX test ADR
- → Multiplexing 8 microcalorimeters
- → Surface-micromachined arrays
- → Noise reduction with new pixel geometries

The NIST Team

Kent Irwin

James Beall

Anna Clark

Steve Deiker

Randy Doriese

Lisa Ferreira

Gene Hilton

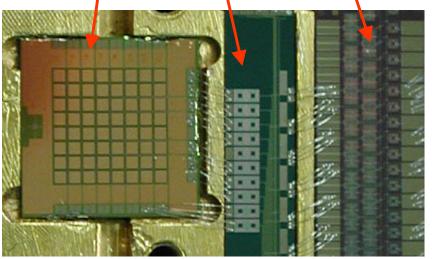
Carl Reintsema

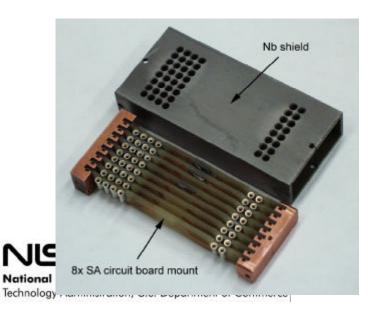
Joel Ullom

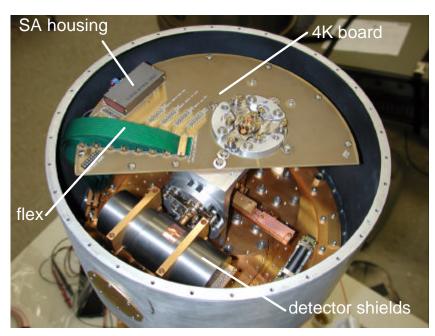
Leila Vale

Yizi Xu

Barry Zink

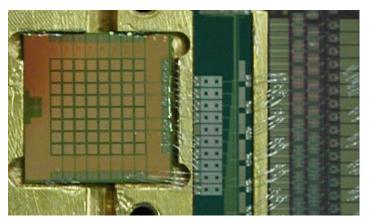

Martin Huber - CU Denver

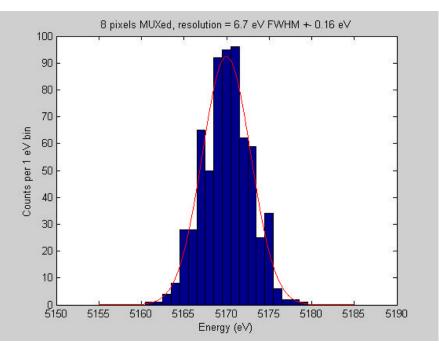




2x10 Multiplexed Test Facility

8×8 μcal array filter chip MUX chip





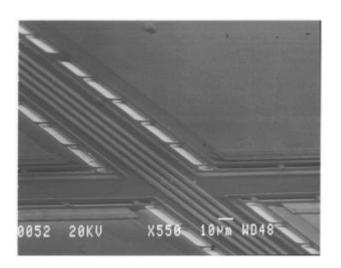
Multiplexing 8 microcalorimeters

- \rightarrow 8 µcalorimeters multiplexed in our "2 × 10" test facility from one 8 × 8 microcalorimeter array.
- → Tests were done with Joule heating pulses. X-ray tests are now underway.
- → No statistically significant degradation in energy resolution was seen for 8 multiplexed pixels.
 - 6.4 +- 0.2 eV for 2 pixels
 - 6.7 +- 0.2 eV for 4 pixels
 - 6.7 +- 0.2 eV for 8 pixels
- \rightarrow Inductive filter limited risetime to \sim 35 μ s. Compatible with response time >= 200 μ s.

Performance target for multiplexer

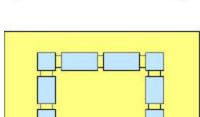
For Constellation-X, significant improvements in amplifier / MUX performance are targeted to achieve 32 pixels multiplexed per output channel:

- Individual SQUID noise improved from 0.5 $\mu\Phi_0/\sqrt{\text{Hz}}$ to ~ 0.1 $\mu\Phi_0/\sqrt{\text{Hz}}$.
- Open-loop bandwidth of the amplifier chain increased from ~ 3 MHz to ~12 MHz.
- Algorithms to robustly correct for photon arrival time.

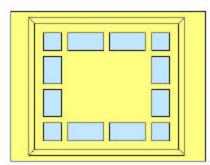

Status:

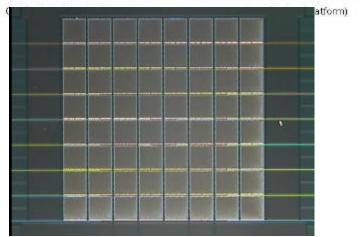
- SQUIDs demonstrated with 0.15 $\mu\Phi_0/\sqrt{Hz}$ white-noise level.
- New designs for SQUID MUX chip, wiring to 4 K, and 300 K preamp now underway.
- Algorithms are being tested.

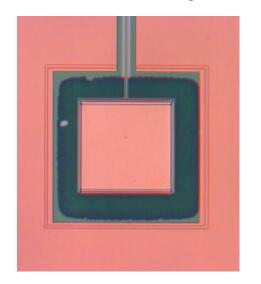
Surface-micromachined µcal arrays

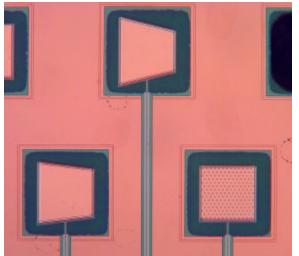

- More room for wiring vs. bulk micromachining, wafers more robust.
- New "platform" design vs. old "table leg" design – improved pixel yield
- ~100% yield on pixels without absorbers
- Some pixels with Bi absorbers still fail on cooling

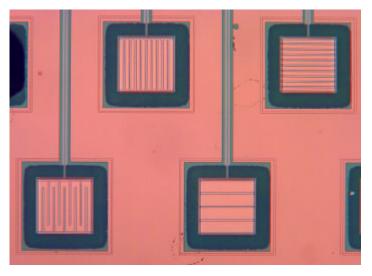
SEM image of "platform" design




Table legs

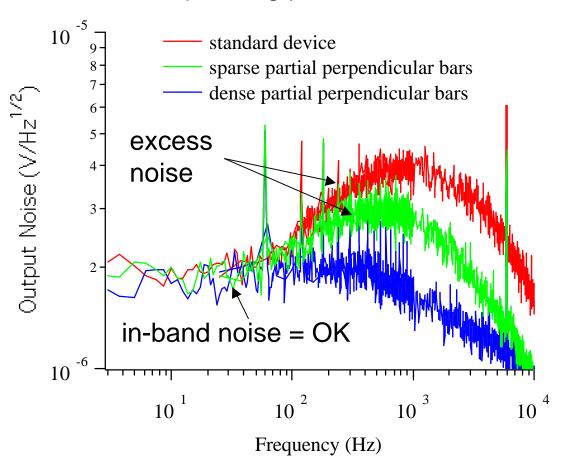



8×8 array of TES microcalorimeters with 2 μm Bi absorbers



Dependence of Detector Noise on Geometry

- measure 20 sensors per thermal cycle in multiplexed "2×10" test facility
 - greatly expanded testing throughput
- have fabricated devices with various geometries:
 - wedges, normal bars, normal islands, ...


engineer superconducting-normal phase boundary less noise?

Demonstrated Noise Reduction

choose operating point to <u>maximize</u> excess high-frequency noise

- Measurements ongoing
- Some designs have no effect (incl. normal islands)
- Some designs (incl.
 perpendicular bars) greatly
 reduce noise, but also reduce α
- Some designs (incl. wedges) modestly reduce noise with little effect on α
- Effect on energy resolution? X-ray tests of promising designs underway.

significant noise reduction possible

- Multiplexing with x-ray signals culminating in "2x8" demo.
- Development of next-generation MUX system, including low-noise and high-bandwidth SQUIDs and room-temperature electronics.
- Optimization of surface-micromachined arrays for robustness, and demonstration of array with Constellation-X form factor and efficiency.
- X-ray illumination of microcalorimeters with new geometries, tests of additional designs, studies of noise mechanisms, and optimization of single pixel for Constellation-X.